New Program: Digital Media for cognitive activation

8 Planning mathematics teaching with Learning-Management-S

New Program: Digital Media for cognitive activation

8 Planning mathematics teaching with Learning-Management-S

SMART - a digital formative assessment tool

The Challenge is to knowledge out of the and make it available teachers inside their classrooms.

What is SMART?

specific mathematics assessments
Origin: University of Melbourne (Kaye Stacey et al.)
currently adapted for German-speaking countries and traditions
Research: 12 years and more than 500.000 students
130 SMART-Tests for grades 5 - 9

Over 130 comprehension-oriented tests coverin content areas and 65 individual topics

Numbers

Geometry
Algebr:
Stochastics and probability

The SMART concept - digital formative assessment

SMART test example: Values for letters

Type in the answer for these two questions.

```
d=4 and e=5
```

$$
\begin{aligned}
& d=4 \text { and } f=6 \\
& \text { so } d+f=\square
\end{aligned}
$$

Some students had to write values of c and d to make an equation true.
Mark the work of each student.

$c+d=7$

Sam wrote $c=3$ and $d=4$. This is $\square v$
$c+d=7$
Sall wrote $c=6$ and $d=1$. This is \qquad
$c+d=9$
Sol wrote $c=4$ and $d=5$. This is \qquad
$c+e=8$
Sid wrote $c=10$ and $e=2$. This is \qquad
$c+d=7$
Sara wrote $c=2$ and $d=5$. Th
Sara wrote $c=2$ and $d=5.72$
$c+d=9$
Song wrote $c=5$ and $d=6$. Tr
$c+e=8$
Simon wrote $c=3$ and $e=5$.
$c+e=8$
Sofie wrote $c=4$ and $e=4$. Tr

Some students had to find some values of x to make this equation true: $x+x+x=12$

Mark the work of each student.

Mary wrote $x=2, x=5$ and $x=5$. This is

$$
\text { Millie wrote } x=9, x=2 \text { and } x=1
$$

Mandy wrote $x=4$. This is \square

Molly wrote $x=4, x=4$ and $x=4$

John wrote $x=6$ and $y=10$. This is \qquad \checkmark.

Jack wrote $x=8$ and $y=8$. This is \qquad

James wrote $x=9$ and $y=7$. This is

SMART test example: Values for letters

- Developmental stages

Stage 1: These students know that letters can stand for n are able to correctly substitute into very simple al expressions, but they believe that the values that take are in some way related to their place in the

Stage 2: These students interpret an algebraic letter only holder for a number in a number sentence, so the letter to have several values in one expression.

Stage 3: These students appreciate that each time a part is used in an equation it stands for the same num they over-generalise to "different letters must be numbers".

Stage 4: These students know that in one algebra questic must stand for only one number and that differer stand for the same number.

SMART test example: Values for letters

- Misconceptions and common errors

A: Students often give a letter a value related to it the alphabet, such as $b=2$.

C: Students believe that the values of consecutive be consecutive numbers.

O: Students believe that if one letter is before ano alphabet, its value must be smaller.

R: When the same letter is used more than once ir expression, these students recognise that it has th value but state this value separately for each occu

SMART test example: Values for letters

Misconceptions and common errors

A: Students often give a letter a \mathbf{v} to its place in the alphabet, such

C: Students believe that the value consecutive letters must be cons numbers.

O: Students believe that if one let another in the alphabet, its value smaller.

R: When the same letter is used r once in an expression, these stud recognise that it has the same val this value separately for each oc

