Three Basic Dimensions for high quality teaching

Classroom management

both a *condition* for students **getting attentive** (e.g., through teacher monitoring) and an *indication* of students **being attentive** (e.g., lack of interruptions)

Supportive Climate

both a *condition* for **students developing learning motivation** (e.g., teacher being sensitive to individual needs) and an *indication* of students **being motivated in a self-determined way** (e.g., low level of achievement pressure).

Cognitive Activation

both a *condition* for **students engaging in knowledge construction** (e.g., through challenging tasks implemented with adequate pace) and an *indication* of **students' being engaged in higher order thinking** (e.g., students providing reasons for their answers).

Basic Experiences as goal for learning mathematics

Mathematics lessons should provide three **basic experiences**:

(1) - MODELLING

"Phenomena of the world around us, which concern or should concern u all, from nature, society and culture should be perceived and understoo a specific way.

(2) - MATHEMATICS INSIGHT

Mathematical objects and facts, represented in language, symbols, image and forms, should be learned and understood as intellectual creations a as a deductively ordered world of their own kind.

(3) - PROBLEM SOLVING

In dealing with tasks to develop problem-solving skills that go beyond mathematics, (heuristic skills)."

ightarrow In every preamble of german curricula and in the national standards

Main principles of teaching mathematics

Wagenschein 1977 Winter 1989 Freudenthal 1991 Hiebert & Carpenter 1992

Wagenschein 1977 Skemp 1976 Hiebert & Carpenter 1992

Freudenthal 1973

- sense-making by starting with meaningful problem
- developing conceptual understanding
- students' active engagement

m^athe<mark>W</mark>e

Com

Kontexte für Sinnstiftendes Mathematiklernen Contexts for Meaningful Learning of Mathematics Researchproject, 2006 - 2017

Design and Research Team on Board

22 Authors in the Design Teams

4 Project leaders and editors

Commercial p

13 PhD-students in the Design Researc

Far more than 100 Master thesis

www.ko-si-ma.de

KOSIMA Approaches & Principles

Underlying approaches for the design:

- Realistic Mathematics Education (Freudenthal 1991)
- Sequentially guided discovery learning with productive failure (Kapur 2010, Loibl et al. 2017)

Design Principles

Predige

Realization of design principles

Design principle

Design element

Develop students' conceptual understanding

(Hiebert & Carpenter 1992; Wagenschein 1977)

Example for a learning trajectory

- curricular focus on conceptual understanding throughout all teaching units
- connect multiple representations
- develop learning trajectories in the RME approach to allow students' mear of all mathematical concepts starting from rich imaginable contexts
- start from students' intuitive knowledge

Pred

Realization of design principles

Design principle

Design element

Use multiple strategies, approaches and representations

(Hiebert & Carpenter 1992; Wagenschein 1977)

> How to determine 2/4 of 3/5? Example

Trial & Error-Till

- I first calculate 1/4 of 3/5.. The result times 4 must be 3/5, though 12/20 Let us try:
 - Try $1/20 \rightarrow x 4$ is 4/20, that is not enough
 - Try 5/20 \rightarrow x 4 is 20/20, that is too much
 - Try 3/20, then yes, the result is 12/20

2/4 of 3/5 is one half of 3/5 I imagine a cake with 5 pieces then I half every fifth, so I get 3/10

represent different approaches and representations consistently by four re compare approaches

• connect their approaches

Study-Examples: Local controlled trials for teaching unit

12 = 3 + 4 + 5

 $12 = 3 \cdot 4$

Teaching Unit Elementary Number Theory

- grade 6
- design focus: Strategies for exploration and problem solving

Randomized controlled trial:

• sample: n = 227 sixth graders

Empirical evidence for efficacy:

• significantly different development of problem solving strategies

Philipp K. (2013). Experimentelles Denken Theoretische und empirische Konkretisierung einer mathematischen Kompetenz. Wiesbaden: Springer.

Teaching Unit Percentages

45%

- grade 7
 - design focus: engaging students in rich discourse pr cognitive demands and multiple pathy

0

Field study:

sample: n = 655 seventh graders in 79

Empirical evidence for effectiveness:

 significantly different development of conceptual understanding of perce

Prediger, S. & Neugebauer, P. (2021)